Fundamental Physics

Introduction to Fundamental Physics Research

Fundamental physics encompasses the study of the fundamental principles and forces that govern the universe at its most fundamental level. It seeks to understand the fundamental particles, their interactions, and the fundamental laws of nature that shape the cosmos.

 

Particle Physics and Standard Model:
  • Investigate the subatomic particles and their interactions as described by the Standard Model, a fundamental theory that unifies electromagnetic, weak, and strong nuclear forces.
Quantum Field Theory:
  • Explore the theoretical framework that combines quantum mechanics with special relativity to describe the behavior of fundamental particles and fields.
Gravitational Physics and General Relativity:
  • Delve into Einstein’s theory of general relativity, which describes the gravitational force as the curvature of spacetime, and its implications for understanding the cosmos on large scales.
Cosmic Microwave Background and Early Universe:
  • Study the remnants of the Big Bang, the cosmic microwave background radiation, to unravel the early history and composition of the universe, offering insights into its formation and evolution.
Astroparticle Physics and Dark Matter/Energy
  • Investigate the mysterious components of the universe, dark matter and dark energy, exploring their properties and effects on the cosmos to deepen our understanding of the fundamental nature of the universe.

 

Theoretical Models

Introduction of Theoretical Models

Theoretical models research involves the development, analysis, and application of mathematical and conceptual frameworks to understand and explain phenomena across various scientific domains. These models serve as a crucial tool for predicting behavior, making hypotheses, and guiding experimental investigations.

 

Quantum Field Theory (QFT):

Quantum Field Theory is a foundational theoretical framework that describes the fundamental forces and particles in the universe within the framework of quantum mechanics and special relativity.

Statistical Mechanics and Thermodynamics:

Theoretical models in statistical mechanics and thermodynamics are essential for understanding the behavior of matter in various states (solid, liquid, gas) and under different conditions (temperature, pressure).

Condensed Matter Theory:

Focused on understanding the properties and behavior of condensed phases of matter, including solids and liquids, using theoretical models. It covers phenomena like superconductivity, magnetism, and phase transitions.

Cosmological and Astrophysical Models:

Theoretical models in cosmology and astrophysics aim to explain the large-scale structure, evolution, and fundamental principles of the universe, including topics like dark matter, dark energy, and the Big Bang.

Computational and Numerical Modeling:

Developing and utilizing computational models to simulate and analyze complex systems in various scientific fields, from molecular dynamics in chemistry to climate modeling in environmental science.